Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Forest Soil Phosphorus Resources and Fertilization Affect Ectomycorrhizal Community Composition, Beech P Uptake Efficiency, and Photosynthesis.

Identifieur interne : 000113 ( Main/Exploration ); précédent : 000112; suivant : 000114

Forest Soil Phosphorus Resources and Fertilization Affect Ectomycorrhizal Community Composition, Beech P Uptake Efficiency, and Photosynthesis.

Auteurs : Aljosa Zaviši [Allemagne] ; Nan Yang [Allemagne] ; Sven Marhan [Allemagne] ; Ellen Kandeler [Allemagne] ; Andrea Polle [Allemagne]

Source :

RBID : pubmed:29706979

Abstract

Phosphorus (P) is an important nutrient, whose plant-available form phosphate is often low in natural forest ecosystems. Mycorrhizal fungi mine the soil for P and supply their host with this resource. It is unknown how ectomycorrhizal communities respond to changes in P availability. Here, we used young beech (Fagus sylvatica L.) trees in natural forest soil from a P-rich and P-poor site to investigate the impact of P amendment on soil microbes, mycorrhizas, beech P nutrition, and photosynthesis. We hypothesized that addition of P to forest soil increased P availability, thereby, leading to enhanced microbial biomass and mycorrhizal diversity in P-poor but not in P-rich soil. We expected that P amendment resulted in increased plant P uptake and enhanced photosynthesis in both soil types. Young beech trees with intact soil cores from a P-rich and a P-poor forest were kept in a common garden experiment and supplied once in fall with triple superphosphate. In the following summer, labile P in the organic layer, but not in the mineral top soil, was significantly increased in response to fertilizer treatment. P-rich soil contained higher microbial biomass than P-poor soil. P treatment had no effect on microbial biomass but influenced the mycorrhizal communities in P-poor soil and shifted their composition toward higher similarities to those in P-rich soil. Plant uptake efficiency was negatively correlated with the diversity of mycorrhizal communities and highest for trees in P-poor soil and lowest for fertilized trees. In both soil types, radioactive P tracing (H333PO4) revealed preferential aboveground allocation of new P in fertilized trees, resulting in increased bound P in xylem tissue and enhanced soluble P in bark, indicating increased storage and transport. Fertilized beeches from P-poor soil showed a strong increase in leaf P concentrations from deficient to luxurious conditions along with increased photosynthesis. Based on the divergent behavior of beech in P-poor and P-rich forest soil, we conclude that acclimation of beech to low P stocks involves dedicated mycorrhizal community structures, low P reserves in storage tissues and photosynthetic inhibition, while storage and aboveground allocation of additional P occurs regardless of the P nutritional status.

DOI: 10.3389/fpls.2018.00463
PubMed: 29706979
PubMed Central: PMC5908982


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Forest Soil Phosphorus Resources and Fertilization Affect Ectomycorrhizal Community Composition, Beech P Uptake Efficiency, and Photosynthesis.</title>
<author>
<name sortKey="Zavisi, Aljosa" sort="Zavisi, Aljosa" uniqKey="Zavisi A" first="Aljosa" last="Zaviši">Aljosa Zaviši</name>
<affiliation wicri:level="3">
<nlm:affiliation>Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Forest Botany and Tree Physiology, University of Göttingen, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yang, Nan" sort="Yang, Nan" uniqKey="Yang N" first="Nan" last="Yang">Nan Yang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Forest Botany and Tree Physiology, University of Göttingen, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Marhan, Sven" sort="Marhan, Sven" uniqKey="Marhan S" first="Sven" last="Marhan">Sven Marhan</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Soil Science and Land Evaluation, Soil Biology, University of Hohenheim, Stuttgart, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Soil Science and Land Evaluation, Soil Biology, University of Hohenheim, Stuttgart</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Stuttgart</region>
<settlement type="city">Stuttgart</settlement>
</placeName>
<orgName type="university">Université de Hohenheim</orgName>
</affiliation>
</author>
<author>
<name sortKey="Kandeler, Ellen" sort="Kandeler, Ellen" uniqKey="Kandeler E" first="Ellen" last="Kandeler">Ellen Kandeler</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Soil Science and Land Evaluation, Soil Biology, University of Hohenheim, Stuttgart, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Soil Science and Land Evaluation, Soil Biology, University of Hohenheim, Stuttgart</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Stuttgart</region>
<settlement type="city">Stuttgart</settlement>
</placeName>
<orgName type="university">Université de Hohenheim</orgName>
</affiliation>
</author>
<author>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
<affiliation wicri:level="3">
<nlm:affiliation>Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Forest Botany and Tree Physiology, University of Göttingen, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratory for Radio-Isotopes, University of Göttingen, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Laboratory for Radio-Isotopes, University of Göttingen, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29706979</idno>
<idno type="pmid">29706979</idno>
<idno type="doi">10.3389/fpls.2018.00463</idno>
<idno type="pmc">PMC5908982</idno>
<idno type="wicri:Area/Main/Corpus">000109</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000109</idno>
<idno type="wicri:Area/Main/Curation">000109</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000109</idno>
<idno type="wicri:Area/Main/Exploration">000109</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Forest Soil Phosphorus Resources and Fertilization Affect Ectomycorrhizal Community Composition, Beech P Uptake Efficiency, and Photosynthesis.</title>
<author>
<name sortKey="Zavisi, Aljosa" sort="Zavisi, Aljosa" uniqKey="Zavisi A" first="Aljosa" last="Zaviši">Aljosa Zaviši</name>
<affiliation wicri:level="3">
<nlm:affiliation>Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Forest Botany and Tree Physiology, University of Göttingen, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yang, Nan" sort="Yang, Nan" uniqKey="Yang N" first="Nan" last="Yang">Nan Yang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Forest Botany and Tree Physiology, University of Göttingen, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Marhan, Sven" sort="Marhan, Sven" uniqKey="Marhan S" first="Sven" last="Marhan">Sven Marhan</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Soil Science and Land Evaluation, Soil Biology, University of Hohenheim, Stuttgart, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Soil Science and Land Evaluation, Soil Biology, University of Hohenheim, Stuttgart</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Stuttgart</region>
<settlement type="city">Stuttgart</settlement>
</placeName>
<orgName type="university">Université de Hohenheim</orgName>
</affiliation>
</author>
<author>
<name sortKey="Kandeler, Ellen" sort="Kandeler, Ellen" uniqKey="Kandeler E" first="Ellen" last="Kandeler">Ellen Kandeler</name>
<affiliation wicri:level="4">
<nlm:affiliation>Institute of Soil Science and Land Evaluation, Soil Biology, University of Hohenheim, Stuttgart, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Soil Science and Land Evaluation, Soil Biology, University of Hohenheim, Stuttgart</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Stuttgart</region>
<settlement type="city">Stuttgart</settlement>
</placeName>
<orgName type="university">Université de Hohenheim</orgName>
</affiliation>
</author>
<author>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
<affiliation wicri:level="3">
<nlm:affiliation>Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Forest Botany and Tree Physiology, University of Göttingen, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratory for Radio-Isotopes, University of Göttingen, Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Laboratory for Radio-Isotopes, University of Göttingen, Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Phosphorus (P) is an important nutrient, whose plant-available form phosphate is often low in natural forest ecosystems. Mycorrhizal fungi mine the soil for P and supply their host with this resource. It is unknown how ectomycorrhizal communities respond to changes in P availability. Here, we used young beech (
<i>Fagus sylvatica</i>
L.) trees in natural forest soil from a P-rich and P-poor site to investigate the impact of P amendment on soil microbes, mycorrhizas, beech P nutrition, and photosynthesis. We hypothesized that addition of P to forest soil increased P availability, thereby, leading to enhanced microbial biomass and mycorrhizal diversity in P-poor but not in P-rich soil. We expected that P amendment resulted in increased plant P uptake and enhanced photosynthesis in both soil types. Young beech trees with intact soil cores from a P-rich and a P-poor forest were kept in a common garden experiment and supplied once in fall with triple superphosphate. In the following summer, labile P in the organic layer, but not in the mineral top soil, was significantly increased in response to fertilizer treatment. P-rich soil contained higher microbial biomass than P-poor soil. P treatment had no effect on microbial biomass but influenced the mycorrhizal communities in P-poor soil and shifted their composition toward higher similarities to those in P-rich soil. Plant uptake efficiency was negatively correlated with the diversity of mycorrhizal communities and highest for trees in P-poor soil and lowest for fertilized trees. In both soil types, radioactive P tracing (H
<sub>3</sub>
<sup>33</sup>
PO
<sub>4</sub>
) revealed preferential aboveground allocation of new P in fertilized trees, resulting in increased bound P in xylem tissue and enhanced soluble P in bark, indicating increased storage and transport. Fertilized beeches from P-poor soil showed a strong increase in leaf P concentrations from deficient to luxurious conditions along with increased photosynthesis. Based on the divergent behavior of beech in P-poor and P-rich forest soil, we conclude that acclimation of beech to low P stocks involves dedicated mycorrhizal community structures, low P reserves in storage tissues and photosynthetic inhibition, while storage and aboveground allocation of additional P occurs regardless of the P nutritional status.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">29706979</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Forest Soil Phosphorus Resources and Fertilization Affect Ectomycorrhizal Community Composition, Beech P Uptake Efficiency, and Photosynthesis.</ArticleTitle>
<Pagination>
<MedlinePgn>463</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2018.00463</ELocationID>
<Abstract>
<AbstractText>Phosphorus (P) is an important nutrient, whose plant-available form phosphate is often low in natural forest ecosystems. Mycorrhizal fungi mine the soil for P and supply their host with this resource. It is unknown how ectomycorrhizal communities respond to changes in P availability. Here, we used young beech (
<i>Fagus sylvatica</i>
L.) trees in natural forest soil from a P-rich and P-poor site to investigate the impact of P amendment on soil microbes, mycorrhizas, beech P nutrition, and photosynthesis. We hypothesized that addition of P to forest soil increased P availability, thereby, leading to enhanced microbial biomass and mycorrhizal diversity in P-poor but not in P-rich soil. We expected that P amendment resulted in increased plant P uptake and enhanced photosynthesis in both soil types. Young beech trees with intact soil cores from a P-rich and a P-poor forest were kept in a common garden experiment and supplied once in fall with triple superphosphate. In the following summer, labile P in the organic layer, but not in the mineral top soil, was significantly increased in response to fertilizer treatment. P-rich soil contained higher microbial biomass than P-poor soil. P treatment had no effect on microbial biomass but influenced the mycorrhizal communities in P-poor soil and shifted their composition toward higher similarities to those in P-rich soil. Plant uptake efficiency was negatively correlated with the diversity of mycorrhizal communities and highest for trees in P-poor soil and lowest for fertilized trees. In both soil types, radioactive P tracing (H
<sub>3</sub>
<sup>33</sup>
PO
<sub>4</sub>
) revealed preferential aboveground allocation of new P in fertilized trees, resulting in increased bound P in xylem tissue and enhanced soluble P in bark, indicating increased storage and transport. Fertilized beeches from P-poor soil showed a strong increase in leaf P concentrations from deficient to luxurious conditions along with increased photosynthesis. Based on the divergent behavior of beech in P-poor and P-rich forest soil, we conclude that acclimation of beech to low P stocks involves dedicated mycorrhizal community structures, low P reserves in storage tissues and photosynthetic inhibition, while storage and aboveground allocation of additional P occurs regardless of the P nutritional status.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zavišić</LastName>
<ForeName>Aljosa</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Nan</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Marhan</LastName>
<ForeName>Sven</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Institute of Soil Science and Land Evaluation, Soil Biology, University of Hohenheim, Stuttgart, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kandeler</LastName>
<ForeName>Ellen</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Institute of Soil Science and Land Evaluation, Soil Biology, University of Hohenheim, Stuttgart, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Polle</LastName>
<ForeName>Andrea</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Forest Botany and Tree Physiology, University of Göttingen, Göttingen, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Laboratory for Radio-Isotopes, University of Göttingen, Göttingen, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>04</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">fungal assemblage</Keyword>
<Keyword MajorTopicYN="N">nutrient stress</Keyword>
<Keyword MajorTopicYN="N">phosphorus nutrition</Keyword>
<Keyword MajorTopicYN="N">plant–microbe interaction</Keyword>
<Keyword MajorTopicYN="N">storage</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>12</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>03</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>5</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>5</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>5</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29706979</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2018.00463</ArticleId>
<ArticleId IdType="pmc">PMC5908982</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Tree Physiol. 2011 Jul;31(7):727-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21849592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Feb 21;12 (2):e0171958</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28222153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Jun;66(12):3523-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25944926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jul;199(2):520-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23594339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Sep 16;7:1398</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27695473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;176(4):849-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17997766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2015 Oct 16;6:984</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26528243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2017 Apr;27(3):233-245</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27885418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Appl. 2010 Jan;20(1):5-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20349827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1974 Jan;53(1):96-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16658661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1979 Nov 15;100(1):95-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">161695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Oct 15;5:548</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25360140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Sep;33(9):1419-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20545879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2015 Jan;21(1):418-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24920268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2010 Sep;13(9):1103-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20545731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2011 May;21(4):297-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20886243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 May 13;6:317</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26029223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2008 Feb;23(2):95-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18191280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2008 May;28(5):703-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18316302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2010 Sep;30(9):1129-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20631011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2011;62:185-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21370979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2009 Aug;136(4):426-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19470091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2007 Dec;10(12):1135-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17922835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2018 Jan 1;38(1):37-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29182787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2014 Feb;8(2):321-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24030593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2009 Jun;19(5):305-316</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19274470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2016 Sep 23;16(1):206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27663513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2000 Jan;20(1):13-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2011 Nov 30;2:83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22645553</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Bade-Wurtemberg</li>
<li>Basse-Saxe</li>
<li>District de Stuttgart</li>
</region>
<settlement>
<li>Göttingen</li>
<li>Stuttgart</li>
</settlement>
<orgName>
<li>Université de Hohenheim</li>
</orgName>
</list>
<tree>
<country name="Allemagne">
<region name="Basse-Saxe">
<name sortKey="Zavisi, Aljosa" sort="Zavisi, Aljosa" uniqKey="Zavisi A" first="Aljosa" last="Zaviši">Aljosa Zaviši</name>
</region>
<name sortKey="Kandeler, Ellen" sort="Kandeler, Ellen" uniqKey="Kandeler E" first="Ellen" last="Kandeler">Ellen Kandeler</name>
<name sortKey="Marhan, Sven" sort="Marhan, Sven" uniqKey="Marhan S" first="Sven" last="Marhan">Sven Marhan</name>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
<name sortKey="Polle, Andrea" sort="Polle, Andrea" uniqKey="Polle A" first="Andrea" last="Polle">Andrea Polle</name>
<name sortKey="Yang, Nan" sort="Yang, Nan" uniqKey="Yang N" first="Nan" last="Yang">Nan Yang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000113 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000113 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29706979
   |texte=   Forest Soil Phosphorus Resources and Fertilization Affect Ectomycorrhizal Community Composition, Beech P Uptake Efficiency, and Photosynthesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29706979" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020